Winter School in Abstract Analysis

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Countable Fréchet Groups

Ulises Ariet Ramos García (joint work with Michael Hrušák)

IMUNAM-Morelia Universidad Nacional Autónoma de México ariet@matmor.unam.mx

> Hejnice February 2009

> > ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

0			
	on	ter	tc.
	υn	LEI	ILS

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

1 The metrization problem for Fréchet groups

2 The Boolean case

3 $C_p(X)$ Fréchet

4 Pre-compact topologies on abelian groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Birkhoff-Kakutani, 1936)

Every first countable group is metrizable.

Definition

A topological space X is *Fréchet-Urysohn* (or just Fréchet) if whenever a point $x \in X$ is in the closure of a set A, there is a sequence of elements of A converging to x.

イロト 不得 トイヨト イヨト

э

Remark

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Birkhoff-Kakutani, 1936)

Every first countable group is metrizable.

Definition

A topological space X is *Fréchet-Urysohn* (or just Fréchet) if whenever a point $x \in X$ is in the closure of a set A, there is a sequence of elements of A converging to x.

Remark

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Birkhoff-Kakutani, 1936)

Every first countable group is metrizable.

Definition

A topological space X is *Fréchet-Urysohn* (or just Fréchet) if whenever a point $x \in X$ is in the closure of a set A, there is a sequence of elements of A converging to x.

Remark

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Birkhoff-Kakutani, 1936)

Every first countable group is metrizable.

Definition

A topological space X is *Fréchet-Urysohn* (or just Fréchet) if whenever a point $x \in X$ is in the closure of a set A, there is a sequence of elements of A converging to x.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Remark

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Example

Let $\mathbb{G} = \{f \in 2^{\omega_1} : |\operatorname{supp}(f)| \leq \omega\}$. Then \mathbb{G} is a countably compact Fréchet topological group that is not first countable.

Remark

- The group G in the previous example is not countable. In fact, all countable subsets of G are metrizable (and thus first countable).
- If a topological group has a first countable dense subspace then such group is also first countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Example

Let $\mathbb{G} = \{f \in 2^{\omega_1} : |\operatorname{supp}(f)| \leq \omega\}$. Then \mathbb{G} is a countably compact Fréchet topological group that is not first countable.

Remark

- The group G in the previous example is not countable. In fact, all countable subsets of G are metrizable (and thus first countable).
- If a topological group has a first countable dense subspace then such group is also first countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Example

Let $\mathbb{G} = \{f \in 2^{\omega_1} : |\operatorname{supp}(f)| \leq \omega\}$. Then \mathbb{G} is a countably compact Fréchet topological group that is not first countable.

Remark

- The group G in the previous example is not countable. In fact, all countable subsets of G are metrizable (and thus first countable).
- If a topological group has a first countable dense subspace then such group is also first countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Example

Let $\mathbb{G} = \{f \in 2^{\omega_1} : |\operatorname{supp}(f)| \leq \omega\}$. Then \mathbb{G} is a countably compact Fréchet topological group that is not first countable.

Remark

- The group G in the previous example is not countable. In fact, all countable subsets of G are metrizable (and thus first countable).
- If a topological group has a first countable dense subspace then such group is also first countable.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Example

Let $\mathbb{G} = \{f \in 2^{\omega_1} : |\operatorname{supp}(f)| \leq \omega\}$. Then \mathbb{G} is a countably compact Fréchet topological group that is not first countable.

Remark

- The group G in the previous example is not countable. In fact, all countable subsets of G are metrizable (and thus first countable).
- If a topological group has a first countable dense subspace then such group is also first countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Problem (Malykhin, 1978)

Is there a countable (separable) Fréchet topological group which is non metrizable?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Problem (Malykhin, 1978)

Is there a countable (separable) Fréchet topological group which is non metrizable?

Contents

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

1 The metrization problem for Fréchet groups

2 The Boolean case

3 $C_p(X)$ Fréchet

4 Pre-compact topologies on abelian groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

The case of a Boolean group

Countable Fréchet Groups	
U. A. Ramos García	
Malykhin's problem	
The Boolean case	
$C_p(X)$ Fréchet	
Pre-compact topologies	A group is Boolean if each of its elements is its own inverse.

Proposition

Every countable Boolean group is isomorphic to $([\omega]^{<\omega}, \Delta)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The case of a Boolean group

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

A group is Boolean if each of its elements is its own inverse.

Proposition

Every countable Boolean group is isomorphic to $([\omega]^{<\omega}, \Delta)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The case of a Boolean group

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

A group is Boolean if each of its elements is its own inverse.

Proposition

Every countable Boolean group is isomorphic to $([\omega]^{<\omega}, \Delta)$.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let $\mathcal I$ be an (free) ideal on ω . Then

 $\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} : (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

• $\mathcal{I}_{\mathsf{x}} = \{I \subseteq X : \mathsf{x} \notin I\}$ and

■ $\mathcal{I}_x^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_x)(|l \cap J| < \omega)\}, i.e. \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

 $\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} : (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

• $\mathcal{I}_{\mathsf{x}} = \{I \subseteq X : \mathsf{x} \notin \overline{I}\}$ and

■ $\mathcal{I}_x^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_x)(|l \cap J| < \omega)\}, i.e. \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

$\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} \colon (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

• $\mathcal{I}_{\mathsf{x}} = \{I \subseteq X : \mathsf{x} \notin \overline{I}\}$ and

■ $\mathcal{I}_{x}^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_{x})(|l \cap J| < \omega)\}, i.e. \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

$$\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} \colon (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

• $\mathcal{I}_{\mathbf{x}} = \{I \subseteq X : x \notin \overline{I}\}$ and

■ $\mathcal{I}_{x}^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_{x})(|l \cap J| < \omega)\}, i.e. \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

$$\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} \colon (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

■ $\mathcal{I}_x^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_x)(|l \cap J| < \omega)\}, i.e. \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

$$\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} \colon (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

• $\mathcal{I}_x = \{I \subseteq X : x \notin \overline{I}\}$ and

■ $\mathcal{I}_x^{\perp} = \{J \subseteq X : (\forall l \in \mathcal{I}_x)(|l \cap J| < \omega)\}, i.e, \text{ the set of all converging sequences to } x.$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{I} be an (free) ideal on ω . Then

$$\mathcal{I}^{<\omega} = \{J \subseteq [\omega]^{<\omega} \colon (\exists I \in \mathcal{I}) (\forall a \in J) (I \cap a \neq \emptyset)\}$$

is an ideal on $[\omega]^{<\omega}$. Let the dual filter of $\mathcal{I}^{<\omega}$ be a neighbourhood base at \emptyset , then use it to give a group topology $\tau_{\mathcal{I}}$ on $([\omega]^{<\omega}, \Delta)$.

Definition

Given a space X and a point $x \in X$ let

- $\mathcal{I}_x = \{I \subseteq X : x \notin \overline{I}\}$ and
- $\mathcal{I}_x^{\perp} = \{J \subseteq X : (\forall I \in \mathcal{I}_x)(|I \cap J| < \omega)\}, i.e, \text{ the set of all converging sequences to } x.$

Countable
Fréchet Groups Remark Mabyhain's
problem X is Fréchet at x if and only if $\mathcal{I}_x = \mathcal{I}_x^{\perp \perp}$.
 X is first countable if and only if $cof(\mathcal{I}_x) = \omega$. Definition

Definition

Call an ideal \mathcal{I} Fréchet if $\mathcal{I} = \mathcal{I}^{\perp \perp}$.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Remark

• X is Fréchet at x if and only if $\mathcal{I}_x = \mathcal{I}_x^{\perp \perp}$.

• X is first countable if and only if $cof(\mathcal{I}_x) = \omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Remark

- X is Fréchet at x if and only if $\mathcal{I}_x = \mathcal{I}_x^{\perp \perp}$.
- X is first countable if and only if $cof(\mathcal{I}_x) = \omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Remark

- X is Fréchet at x if and only if $\mathcal{I}_x = \mathcal{I}_x^{\perp \perp}$.
- X is first countable if and only if $cof(\mathcal{I}_x) = \omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Remark

- X is Fréchet at x if and only if $\mathcal{I}_x = \mathcal{I}_x^{\perp \perp}$.
- X is first countable if and only if $cof(\mathcal{I}_x) = \omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Proposition

- $\tau_{\mathcal{I}}$ is Fréchet if and only if $\mathcal{I}^{<\omega}$ is Fréchet.
- cof(*I*^{<ω}) = cof(*I*), so τ_I is first countable if and only if cof(*I*) = ω.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $cof(\mathcal{J}) < \mathfrak{p}$ implies \mathcal{J} is Fréchet, for any ideal \mathcal{J} .

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Proposition

- $\tau_{\mathcal{I}}$ is Fréchet if and only if $\mathcal{I}^{<\omega}$ is Fréchet.
- cof(I^{<ω}) = cof(I), so τ_I is first countable if and only if cof(I) = ω.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $cof(\mathcal{J}) < \mathfrak{p}$ implies \mathcal{J} is Fréchet, for any ideal \mathcal{J} .

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Proposition

- $\tau_{\mathcal{I}}$ is Fréchet if and only if $\mathcal{I}^{<\omega}$ is Fréchet.
- cof(*I*^{<ω}) = cof(*I*), so τ_I is first countable if and only if cof(*I*) = ω.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $cof(\mathcal{J}) < \mathfrak{p}$ implies \mathcal{J} is Fréchet, for any ideal \mathcal{J} .

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

or each one of the following assumptions, there is an example of the ind $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ to Malykhin's question:

• $\mathfrak{p} > \omega_1$.

(Nyikos, 1992) p = b.

Definition

$$\begin{split} \mathfrak{b} &= \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},\\ \mathfrak{p} &= \min\{|\mathcal{F}|: \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip, which has no infinite pseudo-intersection}\}. \end{split}$$

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

For each one of the following assumptions, there is an example of the kind $([\omega]^{<\omega}, \tau_I)$ to Malykhin's question:

(Nyikos, 1992) p = b.

Definition

 $\mathfrak{b} = \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},\$

 $\mathfrak{p} = \min\{|\mathcal{F}| \colon \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip, which has no infinite } \mathfrak{pseudo-intersection}\}.$

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

For each one of the following assumptions, there is an example of the kind $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ to Malykhin's question:

 $\bullet \mathfrak{p} > \omega_1.$

■ (Nyikos, 1992) p = b.

Definition

 $\mathfrak{b} = \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},\$

 $\mathfrak{p} = \min\{|\mathcal{F}| \colon \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip, which has no infinite pseudo-intersection}\}.$

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

For each one of the following assumptions, there is an example of the kind $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ to Malykhin's question:

• $\mathfrak{p} > \omega_1$.

```
■ (Nyikos, 1992) p = b.
```

Definition

 $\mathfrak{b} = \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},$

 $\mathfrak{p} = \min\{|\mathcal{F}| \colon \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip, which has no infinite } \mathfrak{pseudo-intersection}\}.$

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

For each one of the following assumptions, there is an example of the kind $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ to Malykhin's question:

• $\mathfrak{p} > \omega_1$.

```
■ (Nyikos, 1992) p = b.
```

Definition

 $\mathfrak{b} = \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},$

 $\mathfrak{p} = \min\{|\mathcal{F}| \colon \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip, which has no infinite } \mathfrak{pseudo-intersection}\}.$

Consistent examples

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Examples

For each one of the following assumptions, there is an example of the kind $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ to Malykhin's question:

• $\mathfrak{p} > \omega_1$.

Definition

 $\mathfrak{b} = \min\{|B|: B \text{ is an unbounded subset of }^{\omega}\omega\},\$

 $\mathfrak{p} = \min\{|\mathcal{F}| \colon \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the } sfip, \text{ which has no} \\ \text{ infinite } \mathfrak{pseudo-intersection}\}.$

Partial negative solution

Every countable Fréchet topological group whose topology is analytic is metrizable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial negative solution

Every countable Fréchet topological group whose topology is analytic is metrizable.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

0					
С	\sim	nt		ni	ΗC
L	UI	IL	C		LD

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies 1 The metrization problem for Fréchet groups

2 The Boolean case

3 $C_p(X)$ Fréchet

4 Pre-compact topologies on abelian groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

 $U \text{ is an } \omega \text{-} cover \text{ if for every finite set } F \subseteq X \text{ there is a } U \in \mathcal{U} \\ \text{ such that } F \subseteq U.$

U is a γ-cover if every x ∈ X is cointained in all but finitely many elements of *U*.

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{ $|X|: X \text{ is not a } \gamma$ -set}.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

 \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $\mathcal{U} \in \mathcal{U}$ such that $F \subseteq \mathcal{U}$.

U is a γ-cover if every x ∈ X is cointained in all but finitely many elements of *U*.

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{ $|X|: X \text{ is not a } \gamma$ -set}.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

• \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $U \in \mathcal{U}$ such that $F \subseteq U$.

• \mathcal{U} is a γ -cover if every $x \in X$ is cointained in all but finitely many elements of \mathcal{U} .

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{ $|X|: X \text{ is not a } \gamma$ -set}.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

- \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $U \in \mathcal{U}$ such that $F \subseteq U$.
- \mathcal{U} is a γ -cover if every $x \in X$ is cointained in all but finitely many elements of \mathcal{U} .

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{|X| : X is not a γ -set}.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

- \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $U \in \mathcal{U}$ such that $F \subseteq U$.
- \mathcal{U} is a γ -cover if every $x \in X$ is cointained in all but finitely many elements of \mathcal{U} .

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{|X| : X is not a γ -set}.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

- \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $U \in \mathcal{U}$ such that $F \subseteq U$.
- \mathcal{U} is a γ -cover if every $x \in X$ is cointained in all but finitely many elements of \mathcal{U} .

A space X is a γ -space if every ω -cover of X contains a γ -subcover.

A γ -space which is separable metric is called γ -set. In the same way we define non $(\gamma$ -set) = min $\{|X|: X \text{ is not a } \gamma$ -set $\}$.

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Let \mathcal{U} be an open cover of a space X. Then:

- \mathcal{U} is an ω -cover if for every finite set $F \subseteq X$ there is a $U \in \mathcal{U}$ such that $F \subseteq U$.
- \mathcal{U} is a γ -cover if every $x \in X$ is cointained in all but finitely many elements of \mathcal{U} .

A space X is a γ -space if every ω -cover of X contains a γ -subcover. A γ -space which is separable metric is called γ -set. In the same way we define non(γ -set) = min{ $|X| : X \text{ is not a } \gamma$ -set}.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy)

 $non(\gamma$ -set)= \mathfrak{p} so every separable metric space of size $< \mathfrak{p}$ is a γ -set.

Definitior

A set $X \subseteq \mathbb{R}$ has strong measure zero (SMZ) if for every sequence of positive reals $\langle \varepsilon_n : n \in \omega \rangle$ there exists a sequence of intervals $\langle I_n : n \in \omega \rangle$ such that diam $(I_n) \leqslant \varepsilon_n$ for $n \in \omega$ and $X \subseteq \bigcup_{n \in \omega} I_n$.

Theorem (Gerlits-Nagy/Laver)

Every γ -set is SMZ so it is consistent with **ZFC** that every γ -set is countable.

・ロット (雪) (日) (日) (日)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy)

 $non(\gamma$ -set)= \mathfrak{p} so every separable metric space of size $< \mathfrak{p}$ is a γ -set.

Definitior

A set $X \subseteq \mathbb{R}$ has strong measure zero (SMZ) if for every sequence of positive reals $\langle \varepsilon_n : n \in \omega \rangle$ there exists a sequence of intervals $\langle I_n : n \in \omega \rangle$ such that diam $(I_n) \leqslant \varepsilon_n$ for $n \in \omega$ and $X \subseteq \bigcup_{n \in \omega} I_n$.

Theorem (Gerlits-Nagy/Laver)

Every γ -set is SMZ so it is consistent with **ZFC** that every γ -set is countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy)

 $non(\gamma$ -set)= \mathfrak{p} so every separable metric space of size $< \mathfrak{p}$ is a γ -set.

Definition

A set $X \subseteq \mathbb{R}$ has strong measure zero (SMZ) if for every sequence of positive reals $\langle \varepsilon_n : n \in \omega \rangle$ there exists a sequence of intervals $\langle I_n : n \in \omega \rangle$ such that diam $(I_n) \leq \varepsilon_n$ for $n \in \omega$ and $X \subseteq \bigcup_{n \in \omega} I_n$.

Theorem (Gerlits-Nagy/Laver)

Every γ -set is SMZ so it is consistent with **ZFC** that every γ -set is countable.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy)

 $non(\gamma$ -set)= \mathfrak{p} so every separable metric space of size $< \mathfrak{p}$ is a γ -set.

Definition

A set $X \subseteq \mathbb{R}$ has strong measure zero (SMZ) if for every sequence of positive reals $\langle \varepsilon_n : n \in \omega \rangle$ there exists a sequence of intervals $\langle I_n : n \in \omega \rangle$ such that diam $(I_n) \leq \varepsilon_n$ for $n \in \omega$ and $X \subseteq \bigcup_{n \in \omega} I_n$.

Theorem (Gerlits-Nagy/Laver)

Every γ -set is SMZ so it is consistent with **ZFC** that every γ -set is countable.

γ -sets and $C_{\rho}(X)$ Fréchet

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy, 1982)

 $C_p(X)$ is Fréchet if and only if X is a γ -space.

Corollary (Gerlits-Nagy, 1982)

The existence of $C_p(X)$ which is separable Fréchet non-metrizable is equivalent to the existence of an uncountable γ -set.

・ロット (雪) (日) (日) (日)

γ -sets and $C_{\rho}(X)$ Fréchet

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy, 1982)

 $C_p(X)$ is Fréchet if and only if X is a γ -space.

Corollary (Gerlits-Nagy, 1982)

The existence of $C_p(X)$ which is separable Fréchet non-metrizable is equivalent to the existence of an uncountable γ -set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

γ -sets and $C_{\rho}(X)$ Fréchet

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Gerlits-Nagy, 1982)

 $C_p(X)$ is Fréchet if and only if X is a γ -space.

Corollary (Gerlits-Nagy, 1982)

The existence of $C_p(X)$ which is separable Fréchet non-metrizable is equivalent to the existence of an uncountable γ -set.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

0			
	on	$\pm \alpha$	ntc
Υ.	ΟΠ	LE	nts
~			

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies 1 The metrization problem for Fréchet groups

2 The Boolean case

3 $C_p(X)$ Fréchet

4 Pre-compact topologies on abelian groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group \mathbb{G} its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the *compact-open* topology

Theorem (Pontryagin)

If \mathbb{G} is abelian locally compact then so is \mathbb{G}^* and, morover, \mathbb{G}^{**} is naturally isomorphic to \mathbb{G} .

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group ${\mathbb G}$ its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the *compact-open* topology

Theorem (Pontryagin)

If $\mathbb G$ is abelian locally compact then so is $\mathbb G^*$ and, morover, $\mathbb G^{**}$ is naturally isomorphic to $\mathbb G.$

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group $\mathbb G$ its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the *compact-open* topology

Theorem (Pontryagin)

If $\mathbb G$ is abelian locally compact then so is $\mathbb G^*$ and, morover, $\mathbb G^{**}$ is naturally isomorphic to $\mathbb G.$

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group $\mathbb G$ its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the compact-open topology.

Theorem (Pontryagin)

If $\mathbb G$ is abelian locally compact then so is $\mathbb G^*$ and, morover, $\mathbb G^{**}$ is naturally isomorphic to $\mathbb G.$

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group $\mathbb G$ its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the compact-open topology.

Theorem (Pontryagin)

If $\mathbb G$ is abelian locally compact then so is $\mathbb G^*$ and, morover, $\mathbb G^{**}$ is naturally isomorphic to $\mathbb G.$

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given an abelian topological group $\mathbb G$ its (dual) group of characters is

 $\mathbb{G}^* = \{ x \colon \mathbb{G} \to \mathbb{T} \colon x \text{ is a continuous homomorphism} \}.$

with the compact-open topology.

Theorem (Pontryagin)

If $\mathbb G$ is abelian locally compact then so is $\mathbb G^*$ and, morover, $\mathbb G^{**}$ is naturally isomorphic to $\mathbb G.$

Remark (Pontryagin)

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

A topological group \mathbb{G} is *precompact* (or equivalently totally bounded) if it is a dense subgroup of a compact group (eq. if finitely many translates of very nbhd of *id* cover \mathbb{G}).

Definition

Let \mathbb{G} be an abelian group (discrete) and $X \subseteq G^*$. We say that X separates points of \mathbb{G} if for every $id \neq g \in \mathbb{G}$ there is an $x \in X$ such that $x(g) \neq 0$.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

A topological group \mathbb{G} is *precompact* (or equivalently totally bounded) if it is a dense subgroup of a compact group (eq. if finitely many translates of very nbhd of *id* cover \mathbb{G}).

Definition

Let \mathbb{G} be an abelian group (discrete) and $X \subseteq G^*$. We say that X separates points of \mathbb{G} if for every $id \neq g \in \mathbb{G}$ there is an $x \in X$ such that $x(g) \neq 0$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

A topological group \mathbb{G} is *precompact* (or equivalently totally bounded) if it is a dense subgroup of a compact group (eq. if finitely many translates of very nbhd of *id* cover \mathbb{G}).

Definition

Let \mathbb{G} be an abelian group (discrete) and $X \subseteq G^*$. We say that X separates points of \mathbb{G} if for every $id \neq g \in \mathbb{G}$ there is an $x \in X$ such that $x(g) \neq 0$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given \mathbb{G} an abelian group and $X \subset \mathbb{G}^*$ that separates points of \mathbb{G} let τ_X be the weakest topology on \mathbb{G} which makes all $x \in X$ continuous.

Proposition

 (\mathbb{G}, τ_X) is precompact, morover, every precompact group topology on \mathbb{G} is of the form τ_X .

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given \mathbb{G} an abelian group and $X \subset \mathbb{G}^*$ that separates points of \mathbb{G} let τ_X be the weakest topology on \mathbb{G} which makes all $x \in X$ continuous.

Proposition

 (\mathbb{G}, τ_X) is precompact, morover, every precompact group topology on \mathbb{G} is of the form τ_X .

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given \mathbb{G} an abelian group and $X \subset \mathbb{G}^*$ that separates points of \mathbb{G} let τ_X be the weakest topology on \mathbb{G} which makes all $x \in X$ continuous.

Proposition

 (\mathbb{G}, τ_X) is precompact, morover, every precompact group topology on \mathbb{G} is of the form τ_X .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < rac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

$$\gamma_{\mathbb{G}}$$
-sets

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < rac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$\gamma_{\mathbb{G}} ext{-sets}$$

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < \frac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$\gamma_{\mathbb{G}} ext{-sets}$$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < \frac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\gamma_{\mathbb{G}} ext{-sets}$$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < \frac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\gamma_{\mathbb{G}} ext{-sets}$$

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Definition

Given a countable abelian group \mathbb{G} , $g \in G$ and m > 0 let

$$U_g^m = \{x \in \mathbb{G}^* \colon d(x(g), 0) < \frac{1}{m}\}$$

and given $A \subseteq \mathbb{G}$ let

$$\mathcal{U}_A^m = \{ U_g^m \colon g \in A \}.$$

A set $X \subseteq \mathbb{G}^*$ is $\gamma_{\mathbb{G}}$ -set, if for every infinite $A \subseteq \mathbb{G}$ if \mathcal{U}_A^m is an ω -cover of X for every m > 0, then there is an infinite $B \subseteq A$ such that \mathcal{U}_B^m is a γ -cover of X for every m > 0.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Hrušák-R.)

Let \mathbb{G} be an countable abelian group and $X \subseteq \mathbb{G}^*$ separates points of \mathbb{G} . Then, (\mathbb{G}, τ_X) is Fréchet if and only if X is a $\gamma_{\mathbb{G}}$ -set.

Remark

If $X \subseteq \mathbb{G}^*$ is a γ -set then X is a $\gamma_{\mathbb{G}}$ -set.

Corollary

The existence of a non-metrizable precompact Fréchet group topology on a countable abelian group is equivalent to the existence of an uncountable γ_{G} -set.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Hrušák-R.)

Let \mathbb{G} be an countable abelian group and $X \subseteq \mathbb{G}^*$ separates points of \mathbb{G} . Then, (\mathbb{G}, τ_X) is Fréchet if and only if X is a $\gamma_{\mathbb{G}}$ -set.

Remark

If $X \subseteq \mathbb{G}^*$ is a γ -set then X is a $\gamma_{\mathbb{G}}$ -set.

Corollary

The existence of a non-metrizable precompact Fréchet group topology on a countable abelian group is equivalent to the existence of an uncountable $\gamma_{\mathbb{G}}$ -set.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Hrušák-R.)

Let \mathbb{G} be an countable abelian group and $X \subseteq \mathbb{G}^*$ separates points of \mathbb{G} . Then, (\mathbb{G}, τ_X) is Fréchet if and only if X is a $\gamma_{\mathbb{G}}$ -set.

Remark

If $X \subseteq \mathbb{G}^*$ is a γ -set then X is a $\gamma_{\mathbb{G}}$ -set.

Corollary

The existence of a non-metrizable precompact Fréchet group topology on a countable abelian group is equivalent to the existence of an uncountable $\gamma_{\rm G}$ -set.

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Theorem (Hrušák-R.)

Let \mathbb{G} be an countable abelian group and $X \subseteq \mathbb{G}^*$ separates points of \mathbb{G} . Then, (\mathbb{G}, τ_X) is Fréchet if and only if X is a $\gamma_{\mathbb{G}}$ -set.

Remark

If
$$X \subseteq \mathbb{G}^*$$
 is a γ -set then X is a $\gamma_{\mathbb{G}}$ -set.

Corollary

The existence of a non-metrizable precompact Fréchet group topology on a countable abelian group is equivalent to the existence of an uncountable $\gamma_{\mathbb{G}}$ -set.

$\gamma_{\mathbb{G}}\text{-sets}$ and \mathbf{ZFC}

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

- Is γ_G-set notion weaker than γ-set notion?
- Are there uncountable γ_{G} -sets?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

- Is $\gamma_{\rm G}$ -set notion weaker than γ -set notion?
- Are there uncountable $\gamma_{\mathbb{G}}$ -sets?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

- Is $\gamma_{\mathbb{G}}$ -set notion weaker than γ -set notion?
- Are there uncountable $\gamma_{\mathbb{G}}$ -sets?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

- Is $\gamma_{\mathbb{G}}$ -set notion weaker than γ -set notion?
- Are there uncountable $\gamma_{\mathbb{G}}$ -sets?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

• Is $\gamma_{\mathbb{G}}$ -set notion weaker than γ -set notion?

• Are there uncountable $\gamma_{\mathbb{G}}$ -sets?

Countable Fréchet Groups

U. A. Ramos García

Malykhin's problem

The Boolean case

 $C_p(X)$ Fréchet

Pre-compact topologies

Conjecture

It is consistent with **ZFC** that every $\gamma_{\mathbb{G}}$ -set is countable, or equivalently, it is consistent with **ZFC** that every countable abelian precompact Fréchet group is metrizable.

Questions

- Is there a non-metrizable countable Fréchet group?
- Is there a non-metrizable countable Boolean Fréchet group?

- Is γ_G-set notion weaker than γ-set notion?
- Are there uncountable $\gamma_{\mathbb{G}}$ -sets?